📜 Description 题面
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.
给出两个 非空 的链表用来表示两个非负的整数。其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字。
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。
Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
Explanation: 342 + 465 = 807.
🔗 Link 链接
LeetCode: https://leetcode.com/problems/add-two-numbers/
力扣:https://leetcode-cn.com/problems/add-two-numbers/
❓ Solution 题解
Approach: Elementary Math 初等数学
Intuition 思路
Keep track of the carry using a variable and simulate digits-by-digits sum starting from the head of list, which contains the least-significant digit.
我们使用变量来跟踪进位,并从包含最低有效位的表头开始模拟逐位相加的过程。
Algorithm 算法
Just like how you would sum two numbers on a piece of paper, we begin by summing the least-significant digits, which is the head of l1 and l2. Since each digit is in the range of 0...9, summing two digits may “overflow”. For example 5 + 7 = 12. In this case, we set the current digit to 2 and bring over the carry = 1 to the next iteration. carry must be either 0 or 1 because the largest possible sum of two digits (including the carry) is 9 + 9 + 1 = 19.
就像你在纸上计算两个数字的和那样,我们首先从最低有效位也就是列表 l1 和 l2 的表头开始相加。由于每位数字都应当处于 0...9 的范围内,我们计算两个数字的和时可能会出现 “溢出”。例如,5 + 7 = 12。在这种情况下,我们会将当前位的数值设置为 2,并将进位 carry = 1 带入下一次迭代。进位 carry 必定是 0 或 1,这是因为两个数字相加(考虑到进位)可能出现的最大和为 9 + 9 + 1 = 19。
The pseudocode is as following:
伪代码如下:
- Initialize current node to dummy head of the returning list.
- Initialize carry to 0.
- Initialize p and q to head of l1 and l2 respectively.
- Loop through lists l1 and l2 until you reach both ends.
- Set x to node p‘s value. If p has reached the end of l1, set to 0.
- Set y to node q‘s value. If q has reached the end of l2, set to 0.
- Set sum = x + y + carry.
- Update carry = sum / 10.
- Create a new node with the digit value of (sum \bmod 10) and set it to current node’s next, then advance current node to next.
- Advance both p and q.
- Check if carry = 1, if so append a new node with digit 1 to the returning list.
- Return dummy head’s next node.
- 将当前结点初始化为返回列表的哑结点。
- 将进位 carry 初始化为 0。
- 将 p 和 q 分别初始化为列表 l1 和 l2 的头部。
- 遍历列表 l1 和 l2 直至到达它们的尾端。
- 将 x 设为结点 p 的值。如果 p 已经到达 l1 的末尾,则将其值设置为 0。
- 将 y 设为结点 q 的值。如果 q 已经到达 l2 的末尾,则将其值设置为 0。
- 设定 sum = x + y + carry。
- 更新进位的值,carry = sum / 10。
- 创建一个数值为 (sum \bmod 10) 的新结点,并将其设置为当前结点的下一个结点,然后将当前结点前进到下一个结点。
- 同时,将 p 和 q 前进到下一个结点。
- 检查 carry = 1 是否成立,如果成立,则向返回列表追加一个含有数字 1 的新结点。
- 返回哑结点的下一个结点。
Note that we use a dummy head to simplify the code. Without a dummy head, you would have to write extra conditional statements to initialize the head’s value.
请注意,我们使用哑结点来简化代码。如果没有哑结点,则必须编写额外的条件语句来初始化表头的值。
Take extra caution of the following cases:
请特别注意以下情况:
Test case 测试用例 | Explanation 说明 |
---|---|
l1=[0,1] l2=[0,1,2] | When one list is longer than the other. 当一个列表比另一个列表长时。 |
l1=[] l2=[0,1] | When one list is null, which means an empty list. 当一个列表为空时,即出现空列表。 |
l1=[9,9] l2=[1] | The sum could have an extra carry of one at the end, which is easy to forget. 求和运算最后可能出现额外的进位,这一点很容易被遗忘。 |
Complexity Analysis 复杂度分析
- Time complexity : O(\max(m, n)). Assume that m and n represents the length of l1 and l2 respectively, the algorithm above iterates at most \max(m, n) times.
- Space complexity : O(\max(m, n)). The length of the new list is at most \max(m, n)+1.
- 时间复杂度:O(\max(m, n)),假设 m 和 n 分别表示 l1 和 l2 的长度,上面的算法最多重复 \max(m, n) 次。
- 空间复杂度:O(\max(m, n)), 新列表的长度最多为 \max(m, n)+1。
Follow up 拓展
What if the the digits in the linked list are stored in non-reversed order? For example:
如果链表中的数字不是按逆序存储的呢?例如:
(3 \to 4 \to 2) + (4 \to 6 \to 5) = 8 \to 0 \to 7
📝 Code 代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
int iCarry = 0;
ListNode* pBegin = new ListNode(0);
ListNode* pEnd = pBegin;
while (l1 || l2 || iCarry) {
int iSum = (l1 ? l1->val : 0) + (l2 ? l2->val : 0) + iCarry;
iCarry = iSum / 10;
pEnd->next = new ListNode(iSum % 10);
pEnd = pEnd->next;
l1 = l1 ? l1->next : l1;
l2 = l2 ? l2->next : l2;
}
ListNode* pAns = pBegin->next;
delete pBegin;
return pAns;
}
};